OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 6*a(n-1) +2*a(n-2) -73*a(n-3) +72*a(n-4) +364*a(n-5) -568*a(n-6) -954*a(n-7) +1943*a(n-8) +1391*a(n-9) -3685*a(n-10) -1073*a(n-11) +4101*a(n-12) +326*a(n-13) -2657*a(n-14) +54*a(n-15) +953*a(n-16) -47*a(n-17) -172*a(n-18) +6*a(n-19) +12*a(n-20)
EXAMPLE
Some solutions for n=3
.-1..0.-1..2....1..1..1..0...-2..0.-2..1....4.-2..2..0....2.-1..0.-1
..0..1..0.-1....1.-3..1.-2....0..2..0..1...-2..0..0.-2...-1..0..1..0
.-1..0.-1..2....1..1..1..0...-2..0.-2..1....2..0..0..2....0..1.-2..1
..2.-1..2.-3....0.-2..0.-1....1..1..1..0....0.-2..2.-4...-1..0..1..0
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 13 2012
STATUS
approved