login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279213
Primes formed by concatenating n with n-3.
1
41, 107, 1613, 2017, 3229, 4441, 4643, 5653, 7673, 9491, 106103, 116113, 124121, 130127, 136133, 170167, 172169, 182179, 184181, 196193, 206203, 212209, 214211, 220217, 224221, 230227, 272269, 274271, 280277, 302299, 304301, 320317, 322319, 326323, 334331
OFFSET
1,1
LINKS
EXAMPLE
For n = 16, n-3 = 13. Concatenating 16 and 13 gives 1613 which is a prime. So, 1613 is in the sequence. - Indranil Ghosh, Jan 23 2017
MATHEMATICA
Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n, n -3}]]]], {n, 400}], PrimeQ]
PROG
(Magma) [m: n in [4..400 by 2] | IsPrime(m) where m is Seqint(Intseq(n-3) cat Intseq(n))];
(Python)
from sympy import isprime
i=4
j=1
while j<=10000:
....if isprime(int(str(i)+str(i-3)))==True:
........print str(j)+" "+str(i)+str(i-3)
........j+=1
....i+=1 # Indranil Ghosh, Jan 23 2017
(PARI) terms(n) = my(i=0, k=3); while(i < n, my(x=eval(Str(k, k-3))); if(ispseudoprime(x), print1(x, ", "); i++); k++)
/* Print initial 35 terms as follows: */
terms(35) \\ Felix Fröhlich, Jan 23 2017
CROSSREFS
Sequence in context: A044609 A211494 A142054 * A070270 A001125 A116509
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Dec 08 2016
STATUS
approved