Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 16 2024 14:37:18
%S 41,107,1613,2017,3229,4441,4643,5653,7673,9491,106103,116113,124121,
%T 130127,136133,170167,172169,182179,184181,196193,206203,212209,
%U 214211,220217,224221,230227,272269,274271,280277,302299,304301,320317,322319,326323,334331
%N Primes formed by concatenating n with n-3.
%H Indranil Ghosh, <a href="/A279213/b279213.txt">Table of n, a(n) for n = 1..10000</a>
%e For n = 16, n-3 = 13. Concatenating 16 and 13 gives 1613 which is a prime. So, 1613 is in the sequence. - _Indranil Ghosh_, Jan 23 2017
%t Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n, n -3}]]]], {n, 400}], PrimeQ]
%o (Magma) [m: n in [4..400 by 2] | IsPrime(m) where m is Seqint(Intseq(n-3) cat Intseq(n))];
%o (Python)
%o from sympy import isprime
%o i=4
%o j=1
%o while j<=10000:
%o if isprime(int(str(i)+str(i-3)))==True:
%o print(str(j)+" "+str(i)+str(i-3))
%o j+=1
%o i+=1 # _Indranil Ghosh_, Jan 23 2017
%o (PARI) terms(n) = my(i=0, k=3); while(i < n, my(x=eval(Str(k, k-3))); if(ispseudoprime(x), print1(x, ", "); i++); k++)
%o /* Print initial 35 terms as follows: */
%o terms(35) \\ _Felix Fröhlich_, Jan 23 2017
%Y Cf. A052089, A104332.
%K nonn,base
%O 1,1
%A _Vincenzo Librandi_, Dec 08 2016