Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Apr 13 2012 10:14:23
%S 41,105,259,619,1455,3389,7821,18047,41509,95753,220953,511805,
%T 1187991,2768195,6468085,15166639,35663339,84116703,198906647,
%U 471540601,1120285205,2667019663,6360447181,15193138613,36342090585,87038546365
%N Number of (n+1)X(n+1) -4..4 symmetric matrices with every 2X2 subblock having sum zero and one, two or three distinct values
%C Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
%H R. H. Hardin, <a href="/A211494/b211494.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) +2*a(n-2) -73*a(n-3) +72*a(n-4) +364*a(n-5) -568*a(n-6) -954*a(n-7) +1943*a(n-8) +1391*a(n-9) -3685*a(n-10) -1073*a(n-11) +4101*a(n-12) +326*a(n-13) -2657*a(n-14) +54*a(n-15) +953*a(n-16) -47*a(n-17) -172*a(n-18) +6*a(n-19) +12*a(n-20)
%e Some solutions for n=3
%e .-1..0.-1..2....1..1..1..0...-2..0.-2..1....4.-2..2..0....2.-1..0.-1
%e ..0..1..0.-1....1.-3..1.-2....0..2..0..1...-2..0..0.-2...-1..0..1..0
%e .-1..0.-1..2....1..1..1..0...-2..0.-2..1....2..0..0..2....0..1.-2..1
%e ..2.-1..2.-3....0.-2..0.-1....1..1..1..0....0.-2..2.-4...-1..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 13 2012