OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..162
FORMULA
Empirical: a(n) = 21*a(n-1) -177*a(n-2) +742*a(n-3) -1477*a(n-4) +665*a(n-5) +1725*a(n-6) -952*a(n-7) -1462*a(n-8) -476*a(n-9) -48*a(n-10)
EXAMPLE
Some solutions for n=3
..1..0..2..0....4.-2..1.-2...-2..2.-1..3....4.-2..0.-2...-4..2.-1..0
..0.-1.-1.-1...-2..0..1..0....2.-2..1.-3...-2..0..2..0....2..0.-1..2
..2.-1..3.-1....1..1.-2..1...-1..1..0..2....0..2.-4..2...-1.-1..2.-3
..0.-1.-1.-1...-2..0..1..0....3.-3..2.-4...-2..0..2..0....0..2.-3..4
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 13 2012
STATUS
approved