login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211498
Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having three distinct values for every i<=n and j<=n.
1
38, 84, 166, 318, 600, 1126, 2116, 3988, 7550, 14368, 27464, 52778, 101788, 197248, 383262, 747696, 1461488, 2866146, 5628484, 11082744, 21842862, 43143256, 85269208, 168824386, 334397804, 663306880, 1316099966, 2614415120, 5194474528
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 25*a(n-3) + 16*a(n-4) + 46*a(n-5) - 48*a(n-6) - 26*a(n-7) + 36*a(n-8) + 4*a(n-9) - 8*a(n-10).
Empirical g.f.: 2*x*(19 - 34*x - 123*x^2 + 218*x^3 + 244*x^4 - 426*x^5 - 167*x^6 + 284*x^7 + 36*x^8 - 60*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 4*x^2 + 2*x^4)). - Colin Barker, Jul 18 2018
EXAMPLE
Some solutions for n=5:
.-3....2....0....2...-1...-1...-1....0....0...-3....1....3....2....0...-2....3
.-2....1....2...-2....0....1....1...-2....1....3...-1....1...-2....2....0....0
.-1....0...-2....2....1....0....0....0....2....0....1....3....0...-2....2....3
..0....1....2...-2....2...-1....1....1....1...-3....0....1...-2....0...-2....0
..1....2....0....0....3....0...-1....0....0....3...-1...-1....2....2....0....3
..0....1...-1...-2....2...-1....0....1...-1....0....0....1...-2...-2...-2....0
CROSSREFS
Sequence in context: A043244 A044024 A133529 * A244733 A044176 A044557
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 13 2012
STATUS
approved