OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 12*a(n-1) -36*a(n-2) -86*a(n-3) +557*a(n-4) -82*a(n-5) -2844*a(n-6) +1812*a(n-7) +6764*a(n-8) -4000*a(n-9) -7184*a(n-10) +1824*a(n-11) +1408*a(n-12) -384*a(n-13)
EXAMPLE
Some solutions for n=3
.-2.-1..0..2....0.-2..1..2...-4..1.-4..2...-2..3.-2.-1....4.-1..2.-1
.-1..4.-3..1...-2..4.-3..0....1..2..1..1....3.-4..3..0...-1.-2..1.-2
..0.-3..2..0....1.-3..2..1...-4..1.-4..2...-2..3.-2.-1....2..1..0..1
..2..1..0.-2....2..0..1.-4....2..1..2..0...-1..0.-1..4...-1.-2..1.-2
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 13 2012
STATUS
approved