OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = 4*a(n-1) +8*a(n-2) -47*a(n-3) -13*a(n-4) +224*a(n-5) -60*a(n-6) -553*a(n-7) +282*a(n-8) +745*a(n-9) -465*a(n-10) -524*a(n-11) +351*a(n-12) +165*a(n-13) -112*a(n-14) -18*a(n-15) +12*a(n-16)
EXAMPLE
Some solutions for n=3
.-3..1.-1..2....0..2..2.-2...-4..2.-4..0...-1..0.-1..2...-3..3..0..3
..1..1.-1..0....2.-4..0..0....2..0..2..2....0..1..0.-1....3.-3..0.-3
.-1.-1..1..0....2..0..4.-4...-4..2.-4..0...-1..0.-1..2....0..0..3..0
..2..0..0.-1...-2..0.-4..4....0..2..0..4....2.-1..2.-3....3.-3..0.-3
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 13 2012
STATUS
approved