login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A208142
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically
10
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 12, 81, 108, 64, 10, 16, 144, 324, 240, 100, 12, 20, 256, 720, 900, 450, 144, 14, 25, 400, 1600, 2400, 2025, 756, 196, 16, 30, 625, 3000, 6400, 6300, 3969, 1176, 256, 18, 36, 900, 5625, 14000, 19600, 14112, 7056, 1728, 324, 20, 42, 1296
OFFSET
1,1
COMMENTS
Table starts
..2...4....6.....9....12.....16.....20......25......30.......36.......42
..4..16...36....81...144....256....400.....625.....900.....1296.....1764
..6..36..108...324...720...1600...3000....5625....9450....15876....24696
..8..64..240...900..2400...6400..14000...30625...58800...112896...197568
.10.100..450..2025..6300..19600..49000..122500..264600...571536..1111320
.12.144..756..3969.14112..50176.141120..396900..952560..2286144..4889808
.14.196.1176..7056.28224.112896.352800.1102500.2910600..7683984.17929296
.16.256.1728.11664.51840.230400.792000.2722500.7840800.22581504.57081024
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 3*n^3 + 3*n^2
k=4: a(n) = (9/4)*n^4 + (9/2)*n^3 + (9/4)*n^2
k=5: a(n) = n^5 + 4*n^4 + 5*n^3 + 2*n^2
k=6: a(n) = (4/9)*n^6 + (8/3)*n^5 + (52/9)*n^4 + (16/3)*n^3 + (16/9)*n^2
k=7: a(n) = (5/36)*n^7 + (5/4)*n^6 + (155/36)*n^5 + (85/12)*n^4 + (50/9)*n^3 + (5/3)*n^2
EXAMPLE
Some solutions for n=4 k=3
..1..0..0....0..0..0....0..1..0....1..1..1....0..1..0....0..1..0....0..1..0
..0..0..0....1..0..0....1..1..0....1..1..0....1..0..0....0..1..0....1..0..1
..0..0..0....0..0..0....1..1..0....1..0..0....1..0..0....0..1..0....0..0..0
..0..0..0....0..0..0....1..0..0....1..0..0....1..0..0....0..1..0....0..0..0
CROSSREFS
Column 1 is A004275(n+1)
Column 2 is A016742
Column 3 is A202195(n-2)
Row 1 is A002620(n+2)
Row 2 is A030179(n+2)
Row 3 is A202093(n-2)
Sequence in context: A333823 A207254 A207403 * A207024 A207169 A207111
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 23 2012
STATUS
approved