login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202093
Number of (n+2) X 3 binary arrays avoiding patterns 001 and 011 in rows and columns.
4
108, 324, 720, 1600, 3000, 5625, 9450, 15876, 24696, 38416, 56448, 82944, 116640, 164025, 222750, 302500, 399300, 527076, 679536, 876096, 1107288, 1399489, 1739010, 2160900, 2646000, 3240000, 3916800, 4734976, 5659776, 6765201, 8005878
OFFSET
1,1
COMMENTS
Column 1 of A202100.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(108 + 108*x - 360*x^2 - 56*x^3 + 700*x^4 - 115*x^5 - 680*x^6 + 236*x^7 + 334*x^8 - 155*x^9 - 66*x^10 + 36*x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 28*n^5 + 324*n^4 + 1984*n^3 + 6784*n^2 + 12288*n + 9216) / 256 for n even.
a(n) = (n^6 + 28*n^5 + 321*n^4 + 1928*n^3 + 6395*n^2 + 11100*n + 7875) / 256 for n odd.
(End)
EXAMPLE
Some solutions for n=10:
..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..1..0....1..0..0....1..1..1....1..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..1....1..0..0....1..0..0
..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0
..0..1..0....1..1..0....1..0..1....1..1..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..1
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..0
CROSSREFS
Sequence in context: A202100 A202492 A369420 * A202485 A202317 A202310
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 11 2011
STATUS
approved