login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369420
Powerful numbers k that are not prime powers, such that k has a primorial kernel but is not a product of primorials.
1
108, 324, 648, 972, 1944, 2700, 2916, 3888, 4500, 5832, 8100, 8748, 9000, 11664, 13500, 16200, 17496, 18000, 22500, 23328, 24300, 26244, 34992, 36000, 40500, 45000, 48600, 52488, 67500, 69984, 72000, 72900, 78732, 81000, 90000, 97200, 104976, 112500, 121500, 132300
OFFSET
1,1
COMMENTS
Numbers k such that Omega(k) > omega(k) > 1, prime powers p^m | k are such that m > 1, rad(k) is a primorial, but k is not a product of primorials, where Omega = A001222 and omega = A001221.
Contains no odd numbers as a consequence of being a proper subset of A055932.
Proper subset of A369419, which is in turn a proper subset of A126706.
LINKS
FORMULA
{a(n)} = {A369374 \ A364930}.
Intersection of A056808 and A286708.
EXAMPLE
36 = 2^2 * 3^2 is a product of primorials, therefore not in the sequence.
72 = 2^3 * 3^2 is not a term because it is a product of primorials.
100 = 2^2 * 5^2 is not in the sequence since it does not have a primorial kernel.
108 = 2^2 * 3*3 is in the sequence since it is not a product of primorials, but its squarefree kernel is 6, a primorial.
144 = 2^4 * 3^2 is not in the sequence since it is a product of primorials, etc.
MATHEMATICA
With[{nn = 2^20},
Select[
Select[
Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
Not@*PrimePowerQ],
And[EvenQ[#1],
Union@ Differences@ PrimePi[#2[[All, 1]]] == {1}, !
AllTrue[Differences@ #2[[All, -1]], # <= 0 &]] & @@
{#, FactorInteger[#]} &] ]
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jan 22 2024
STATUS
approved