OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....13....18.....25.....34......46......62.......83......111
..4..16...36...81...169...324....625...1156....2116....3844.....6889....12321
..6..36...98..271...677..1504...3399...7220...15184...31664....64749...132543
..8..64..200..643..1835..4534..11511..27012...62814..144676...325111...733469
.10.100..350.1271..4047.10898..30415..77326..194952..486102..1177409..2870021
.12.144..556.2239..7837.22714..68737.187054..505040.1346150..3472283..9030485
.14.196..826.3641.13863.42874.139341.402498.1153962.3259098..8878431.24420005
.16.256.1168.5581.22931.75198.260597.794118.2402578.7142988.20426983.59031673
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..612
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (7/60)*n^5 + (8/3)*n^4 + (185/12)*n^3 + (19/3)*n^2 - (218/15)*n + 3
k=6: a(n) = (7/360)*n^6 + (77/120)*n^5 + (635/72)*n^4 + (623/24)*n^3 - (511/180)*n^2 - (103/5)*n + 6
k=7: a(n) = (1/280)*n^7 + (7/45)*n^6 + (47/15)*n^5 + (206/9)*n^4 + (4111/120)*n^3 - (1037/45)*n^2 - (4493/210)*n + 9
EXAMPLE
Some solutions for n=4 k=3
..0..1..0....0..0..1....1..0..0....1..0..0....1..1..1....0..1..0....1..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..0..1
..0..0..1....0..0..1....1..0..1....1..0..1....1..1..1....0..1..0....0..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..1..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 15 2012
STATUS
approved