login
A207111
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically
12
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 98, 64, 10, 18, 169, 271, 200, 100, 12, 25, 324, 677, 643, 350, 144, 14, 34, 625, 1504, 1835, 1271, 556, 196, 16, 46, 1156, 3399, 4534, 4047, 2239, 826, 256, 18, 62, 2116, 7220, 11511, 10898, 7837, 3641, 1168, 324, 20, 83, 3844
OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....13....18.....25.....34......46......62.......83......111
..4..16...36...81...169...324....625...1156....2116....3844.....6889....12321
..6..36...98..271...677..1504...3399...7220...15184...31664....64749...132543
..8..64..200..643..1835..4534..11511..27012...62814..144676...325111...733469
.10.100..350.1271..4047.10898..30415..77326..194952..486102..1177409..2870021
.12.144..556.2239..7837.22714..68737.187054..505040.1346150..3472283..9030485
.14.196..826.3641.13863.42874.139341.402498.1153962.3259098..8878431.24420005
.16.256.1168.5581.22931.75198.260597.794118.2402578.7142988.20426983.59031673
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (7/60)*n^5 + (8/3)*n^4 + (185/12)*n^3 + (19/3)*n^2 - (218/15)*n + 3
k=6: a(n) = (7/360)*n^6 + (77/120)*n^5 + (635/72)*n^4 + (623/24)*n^3 - (511/180)*n^2 - (103/5)*n + 6
k=7: a(n) = (1/280)*n^7 + (7/45)*n^6 + (47/15)*n^5 + (206/9)*n^4 + (4111/120)*n^3 - (1037/45)*n^2 - (4493/210)*n + 9
EXAMPLE
Some solutions for n=4 k=3
..0..1..0....0..0..1....1..0..0....1..0..0....1..1..1....0..1..0....1..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..0..1
..0..0..1....0..0..1....1..0..1....1..0..1....1..1..1....0..1..0....0..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..1..0
CROSSREFS
Column 2 is A016742
Row 1 is A171861(n+1)
Row 2 is A207025
Sequence in context: A208142 A207024 A207169 * A207305 A207391 A207938
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 15 2012
STATUS
approved