login
A207391
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically
10
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 98, 64, 10, 21, 196, 271, 200, 100, 12, 31, 441, 834, 643, 350, 144, 14, 46, 961, 2307, 2356, 1271, 556, 196, 16, 68, 2116, 6115, 7561, 5348, 2239, 826, 256, 18, 100, 4624, 16544, 23071, 19319, 10570, 3641, 1168, 324, 20, 147
OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....14.....21.....31......46.......68......100.......147
..4..16...36...81...196....441....961....2116.....4624....10000.....21609
..6..36...98..271...834...2307...6115...16544....44250...116526....307117
..8..64..200..643..2356...7561..23071...72410...223804...678174...2060069
.10.100..350.1271..5348..19319..65955..232892...806886..2731598...9282799
.12.144..556.2239.10570..42167.158217..616386..2348280..8718366..32527713
.14.196..826.3641.18972..82477.335915.1424240..5887228.23664574..95673277
.16.256.1168.5581.31710.148743.651531.2975974.13215696.56972122.247183399
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (2/15)*n^5 + (55/12)*n^4 + (101/6)*n^3 + (5/12)*n^2 - (299/30)*n + 2
k=6: a(n) = (1/36)*n^6 + (113/60)*n^5 + (151/9)*n^4 + (95/4)*n^3 - (605/36)*n^2 - (229/30)*n + 3
k=7: a(n) = (1/210)*n^7 + (103/180)*n^6 + (197/20)*n^5 + (1439/36)*n^4 + (293/20)*n^3 - (3469/90)*n^2 + (157/105)*n + 3
EXAMPLE
Some solutions for n=4 k=3
..1..0..0....0..0..0....0..1..1....1..1..1....1..1..1....1..0..1....1..0..1
..0..0..0....0..1..1....1..1..0....1..1..1....1..0..1....1..0..1....0..1..1
..1..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1
..0..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1
CROSSREFS
Column 1 is A004275(n+1)
Column 2 is A016742
Column 3 is A207106
Column 4 is A207107
Row 1 is A038718(n+2)
Row 2 is A207069
Sequence in context: A207169 A207111 A207305 * A207938 A207068 A209650
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 17 2012
STATUS
approved