login
A207305
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically
10
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 98, 64, 10, 19, 169, 271, 200, 100, 12, 28, 361, 665, 643, 350, 144, 14, 41, 784, 1675, 1759, 1271, 556, 196, 16, 60, 1681, 4344, 4939, 3773, 2239, 826, 256, 18, 88, 3600, 11081, 14446, 11497, 7093, 3641, 1168, 324, 20, 129
OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....13....19.....28......41......60.......88......129
..4..16...36...81...169...361....784....1681....3600.....7744....16641
..6..36...98..271...665..1675...4344...11081...28136....71908...183709
..8..64..200..643..1759..4939..14446...41505..118266...339548...975493
.10.100..350.1271..3773.11497..36868..116117..361408..1134028..3564401
.12.144..556.2239..7093.23091..79802..271023..906448..3057442.10340359
.14.196..826.3641.12169.41893.154228..558557.1985288..7118528.25615229
.16.256.1168.5581.19515.70537.274288.1050811.3937294.14887794.56536529
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (8/3)*n^4 + (49/3)*n^3 + (16/3)*n^2 - (43/3)*n + 3
k=6: a(n) = (4/15)*n^5 + (45/4)*n^4 + (199/6)*n^3 - (73/4)*n^2 - (373/30)*n + 5
k=7: a(n) = (187/60)*n^5 + (153/4)*n^4 + (455/12)*n^3 - (249/4)*n^2 + (209/30)*n + 4
EXAMPLE
Some solutions for n=4 k=3
..1..1..1....0..1..0....1..1..0....0..0..1....1..1..0....0..1..0....1..0..0
..1..1..1....1..1..0....0..0..1....0..0..1....1..0..0....0..1..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..1....1..0..0....0..1..0....1..0..0
..1..1..1....1..1..0....1..1..1....0..0..1....1..0..0....0..1..0....0..0..1
CROSSREFS
Column 2 is A016742
Column 3 is A207106
Column 4 is A207107
Row 1 is A000930(n+3)
Row 2 is A207170
Sequence in context: A207024 A207169 A207111 * A207391 A207938 A207068
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 16 2012
STATUS
approved