login
A209650
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically
10
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 102, 64, 10, 22, 196, 270, 216, 100, 12, 35, 484, 798, 630, 390, 144, 14, 56, 1225, 2354, 2156, 1215, 636, 196, 16, 90, 3136, 7210, 7128, 4690, 2079, 966, 256, 18, 145, 8100, 22232, 24990, 16830, 8904, 3276, 1392, 324, 20, 234
OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....14.....22.....35......56.......90......145.......234
..4..16...36...81...196....484...1225....3136.....8100....21025.....54756
..6..36..102..270...798...2354...7210...22232....69570...218950....693810
..8..64..216..630..2156...7128..24990...87136...311040..1112150...4018716
.10.100..390.1215..4690..16830..65765..251160...994050..3911375..15639390
.12.144..636.2079..8904..34012.145775..597856..2579940.10954895..47622744
.14.196..966.3276.15386..61754.287140.1247736..5805450.26247900.122620446
.16.256.1392.4860.24808.103664.518700.2364992.11769120.56106300.279344520
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = 9*n^3 + (9/2)*n^2 - (9/2)*n
k=5: a(n) = (7/2)*n^4 + 21*n^3 - (7/2)*n^2 - 7*n
k=6: a(n) = 22*n^4 + (88/3)*n^3 - 22*n^2 - (22/3)*n
k=7: a(n) = 7*n^5 + 70*n^4 + (35/3)*n^3 - (105/2)*n^2 - (7/6)*n
EXAMPLE
Some solutions for n=4 k=3
..1..1..1....1..1..1....1..1..0....0..0..0....0..1..0....0..0..0....0..1..0
..1..1..1....1..1..1....1..1..0....0..1..1....1..1..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..0....0..1..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..0....0..0..0....0..0..0....0..0..0....0..0..0
CROSSREFS
Column 2 is A016742
Column 3 is A086113
Row 1 is A001611(n+2)
Row 2 is A207436
Row 3 is A207747
Sequence in context: A207391 A207938 A207068 * A207599 A207703 A267719
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 11 2012
STATUS
approved