login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207254
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically
11
2, 4, 4, 6, 16, 6, 8, 36, 36, 10, 10, 64, 102, 100, 16, 12, 100, 216, 370, 256, 26, 14, 144, 390, 940, 1232, 676, 42, 16, 196, 636, 1950, 3776, 4238, 1764, 68, 18, 256, 966, 3560, 9072, 15652, 14406, 4624, 110, 20, 324, 1392, 5950, 18688, 43498, 64176, 49164
OFFSET
1,1
COMMENTS
Table starts
..2....4.....6......8.....10......12......14.......16.......18.......20
..4...16....36.....64....100.....144.....196......256......324......400
..6...36...102....216....390.....636.....966.....1392.....1926.....2580
.10..100...370....940...1950....3560....5950.....9320....13890....19900
.16..256..1232...3776...9072...18688...34608....59264....95568...146944
.26..676..4238..15652..43498..101036..207298...388232...677898..1119716
.42.1764.14406..64176.206514..541380.1231650..2524704..4777290..8483748
.68.4624.49164.263976.982940.2906592.7328836.16436824.33693660.64313720
LINKS
FORMULA
Empirical for row n:
n=1: a(k) = 2*k
n=2: a(k) = 4*k^2
n=3: a(k) = 2*k^3 + 6*k^2 - 2*k
n=4: a(k) = (5/6)*k^4 + (35/3)*k^3 - (5/6)*k^2 - (5/3)*k
n=5: a(k) = (4/15)*k^5 + (32/3)*k^4 + (44/3)*k^3 - (32/3)*k^2 + (16/15)*k
n=6: a(k) = (13/180)*k^6 + (143/20)*k^5 + (1235/36)*k^4 - (39/4)*k^3 - (377/45)*k^2 + (13/5)*k
n=7: a(k) = (1/60)*k^7 + (77/20)*k^6 + (2527/60)*k^5 + (119/4)*k^4 - (644/15)*k^3 + (42/5)*k^2 + (4/5)*k
EXAMPLE
Some solutions for n=4 k=3
..1..1..0....0..0..0....1..0..0....0..0..0....1..1..1....1..0..0....1..1..1
..1..0..0....0..0..0....0..0..0....0..1..1....1..1..1....1..0..0....1..1..1
..1..0..0....1..1..1....0..0..0....1..1..1....0..1..0....1..0..0....1..1..1
..0..1..1....1..1..1....0..1..1....1..0..0....0..1..0....1..0..0....1..1..1
CROSSREFS
Column 1 is A006355(n+2)
Column 2 is A206981
Row 2 is A016742
Row 3 is A086113
Sequence in context: A276985 A081238 A333823 * A207403 A208142 A207024
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 16 2012
STATUS
approved