OFFSET
1,1
COMMENTS
Table starts
..2...4....6....9....12.....16.....20.....25......30......36.......42.......49
..4..16...36...81...144....256....400....625.....900....1296.....1764.....2401
..6..36..102..289...612...1296...2340...4225....6890...11236....17066....25921
..8..64..216..729..1782...4356...8910..18225...33210...60516...101598...170569
.10.100..390.1521..4212..11664..26676..61009..123006..248004...456666...840889
.12.144..636.2809..8692..26896..68060.172225..380970..842724..1690038..3389281
.14.196..966.4761.16284..55696.154580.429025.1033590.2490084..5404650.11730625
.16.256.1392.7569.28362.106276.321110.970225.2529480.6594624.15405432.35988001
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1512
FORMULA
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = n^4 + 6*n^3 + 7*n^2 - 6*n + 1
k=5: a(n) = (1/3)*n^5 + 3*n^4 + (28/3)*n^3 + 7*n^2 - (29/3)*n + 2
k=6: a(n) = (1/9)*n^6 + (4/3)*n^5 + (58/9)*n^4 + (40/3)*n^3 + (49/9)*n^2 - (44/3)*n + 4
k=7: a(n) = (1/36)*n^7 + (4/9)*n^6 + (53/18)*n^5 + (91/9)*n^4 + (589/36)*n^3 + (31/9)*n^2 - (58/3)*n + 6
EXAMPLE
Some solutions for n=4 k=3
..0..0..0....1..1..1....1..1..0....0..1..0....0..0..0....1..1..0....0..0..0
..1..0..0....1..1..1....1..0..1....1..1..0....0..1..0....0..0..0....0..1..0
..0..0..0....1..1..1....1..0..0....1..1..0....0..0..0....0..1..0....0..0..0
..0..0..0....1..1..1....1..0..1....1..1..0....0..0..0....0..1..0....0..1..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 17 2012
STATUS
approved