login
A081238
#{(i,j): mu(i)*mu(j) = -1, 1 <= i <= n, 1 <= j <= n}, where mu=A008683 (Moebius function).
3
0, 2, 4, 4, 6, 12, 16, 16, 16, 24, 30, 30, 36, 48, 60, 60, 70, 70, 80, 80, 96, 112, 126, 126, 126, 144, 144, 144, 160, 176, 192, 192, 216, 240, 264, 264, 286, 312, 338, 338, 364, 390, 416, 416, 416, 448, 476, 476, 476, 476, 510, 510, 540, 540, 576, 576, 612, 648
OFFSET
1,2
LINKS
FORMULA
a(n) + A081239(n) + A081240(n) = n^2;
a(n) = a(n-1) iff mu(n) = 0.
a(n) = 2*A070548(n)*A070549(n). - Robert Israel, Jan 08 2018
EXAMPLE
n mu(n) n: 1 2 3 4 5 6 7 8
- ----- +----------------->
1 +1 | + - - 0 - + - 0
2 -1 | - + + 0 + - + 0
3 -1 | - + + 0 + - + 0
4 0 | 0 0 0 0 0 0 0 0
5 -1 | - + + 0 + - + 0 a(8)=16, as there are
6 +1 | + - - 0 - + - 0 16 '-1's in the 8 X 8 square
7 -1 | - + + 0 + - + 0 (represented as '-')
8 0 | 0 0 0 0 0 0 0 0
MAPLE
Nplus:= 0:
Nminus:=0:
for n from 1 to 100 do
v:= numtheory:-mobius(n);
if v = 1 then Nplus:= Nplus+1
elif v = -1 then Nminus:= Nminus+1
fi;
A[n]:= 2*Nplus*Nminus;
od:
seq(A[n], n=1..100); # Robert Israel, Jan 08 2018
MATHEMATICA
Nplus = Nminus = 0;
For[n = 1, n <= 100, n++, v = MoebiusMu[n];
If[v == 1, Nplus++,
If[v == -1, Nminus++]];
a[n] = 2 Nplus Nminus];
Array[a, 100] (* Jean-François Alcover, Dec 16 2021, after Robert Israel *)
PROG
(Haskell)
a081238 n = length [() | u <- [1..n], v <- [1..n],
a008683 u * a008683 v == -1]
-- Reinhard Zumkeller, Aug 03 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 11 2003
STATUS
approved