Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 16 2021 04:13:41
%S 0,2,4,4,6,12,16,16,16,24,30,30,36,48,60,60,70,70,80,80,96,112,126,
%T 126,126,144,144,144,160,176,192,192,216,240,264,264,286,312,338,338,
%U 364,390,416,416,416,448,476,476,476,476,510,510,540,540,576,576,612,648
%N #{(i,j): mu(i)*mu(j) = -1, 1 <= i <= n, 1 <= j <= n}, where mu=A008683 (Moebius function).
%H Reinhard Zumkeller, <a href="/A081238/b081238.txt">Table of n, a(n) for n = 1..500</a>
%F a(n) + A081239(n) + A081240(n) = n^2;
%F a(n) = a(n-1) iff mu(n) = 0.
%F a(n) = 2*A070548(n)*A070549(n). - _Robert Israel_, Jan 08 2018
%e n mu(n) n: 1 2 3 4 5 6 7 8
%e - ----- +----------------->
%e 1 +1 | + - - 0 - + - 0
%e 2 -1 | - + + 0 + - + 0
%e 3 -1 | - + + 0 + - + 0
%e 4 0 | 0 0 0 0 0 0 0 0
%e 5 -1 | - + + 0 + - + 0 a(8)=16, as there are
%e 6 +1 | + - - 0 - + - 0 16 '-1's in the 8 X 8 square
%e 7 -1 | - + + 0 + - + 0 (represented as '-')
%e 8 0 | 0 0 0 0 0 0 0 0
%p Nplus:= 0:
%p Nminus:=0:
%p for n from 1 to 100 do
%p v:= numtheory:-mobius(n);
%p if v = 1 then Nplus:= Nplus+1
%p elif v = -1 then Nminus:= Nminus+1
%p fi;
%p A[n]:= 2*Nplus*Nminus;
%p od:
%p seq(A[n],n=1..100); # _Robert Israel_, Jan 08 2018
%t Nplus = Nminus = 0;
%t For[n = 1, n <= 100, n++, v = MoebiusMu[n];
%t If[v == 1, Nplus++,
%t If[v == -1, Nminus++]];
%t a[n] = 2 Nplus Nminus];
%t Array[a, 100] (* _Jean-François Alcover_, Dec 16 2021, after _Robert Israel_ *)
%o (Haskell)
%o a081238 n = length [() | u <- [1..n], v <- [1..n],
%o a008683 u * a008683 v == -1]
%o -- _Reinhard Zumkeller_, Aug 03 2012
%Y Cf. A070548, A070549, A081239, A081240.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Mar 11 2003