login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207118
Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.
4
6, 36, 102, 289, 612, 1296, 2340, 4225, 6890, 11236, 17066, 25921, 37352, 53824, 74472, 103041, 138030, 184900, 241230, 314721, 401676, 512656, 642252, 804609, 992082, 1223236, 1487570, 1809025, 2173520, 2611456, 3104336, 3690241, 4345302
OFFSET
1,1
COMMENTS
Column 3 of A207123.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(6 + 24*x + 6*x^2 + x^3 + 16*x^4 - 4*x^5 - 20*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 24*n^5 + 208*n^4 + 816*n^3 + 1600*n^2 + 1536*n + 576) / 576 for n even.
a(n) = (n^6 + 24*n^5 + 205*n^4 + 768*n^3 + 1315*n^2 + 936*n + 207) / 576 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..1..1..0....1..0..1....1..1..0....1..1..1....0..0..0....0..1..1....1..1..1
..0..0..0....0..1..1....1..1..0....1..1..1....0..1..1....0..1..1....1..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
CROSSREFS
Cf. A207123.
Sequence in context: A207243 A207237 A207070 * A207704 A207495 A207249
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 15 2012
STATUS
approved