The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202543 Decimal expansion of the number x satisfying e^(x/2) - e^(-x/2) = 1. 7
 9, 6, 2, 4, 2, 3, 6, 5, 0, 1, 1, 9, 2, 0, 6, 8, 9, 4, 9, 9, 5, 5, 1, 7, 8, 2, 6, 8, 4, 8, 7, 3, 6, 8, 4, 6, 2, 7, 0, 3, 6, 8, 6, 6, 8, 7, 7, 1, 3, 2, 1, 0, 3, 9, 3, 2, 2, 0, 3, 6, 3, 3, 7, 6, 8, 0, 3, 2, 7, 7, 3, 5, 2, 1, 6, 4, 4, 3, 5, 4, 8, 8, 2, 4, 0, 1, 8, 8, 5, 8, 2, 4, 5, 4, 4, 6, 9, 4, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A202537 for a guide to related sequences. The Mathematica program includes a graph. W. Gawronski et al. in their paper - see ref. below - obtained the asymptotics for the Chebyshev-Stirling numbers. In the algebraic description of the respective "asymptotic coefficients" the number x = 2*log phi, where phi is the golden section, play the central role. - Roman Witula, Feb 02 2015 Also two times the Lévy measure for the continued fraction of the golden section, i.e., A202543/log(2) is the mean number of bits gained from the next convergent of the continued fraction representation. (See also Dan Lascu in links.) - A.H.M. Smeets, Jun 06 2018 LINKS W. Gawronski, L. L. Littlejohn, and T. Neuschel, Asymptotics of Stirling and Chebyshev-Stirling numbers of the second kind, arXiv:1308.6803 [math.CO], 2013. W. Gawronski, L. L. Littlejohn, and T. Neuschel, Asymptotics of Stirling and Chebyshev-Stirling numbers of the second kind, Studies in Applied Mathematics by MIT 133 (2014), 1-17. Dan Lascu, A Gauss-Kuzmintype problem for a family of continued fraction expansions, Journal of Number Theory 133 (2013), 2153-2181. FORMULA Equals 2*A002390. - A.H.M. Smeets, Jun 06 2018 From Amiram Eldar, Aug 21 2020: (Start) Equals log(A104457) = log(1 + A001622). Equals 2*arcsinh(1/2). [corrected by Georg Fischer, Jul 12 2021] Equals Sum_{k>=0} (-1)^k*binomial(2*k,k)/((2*k+1)*16^k). (End) EXAMPLE 0.9624236501192068949955178268487368462703686... MATHEMATICA u = 1/2; v = 1/2; f[x_] := E^(u*x) - E^(-v*x); g[x_] := 1 Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .9, 1}, WorkingPrecision -> 110] RealDigits[r]    (* A202543 *) RealDigits[ Log[ (3+Sqrt[5])/2], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *) RealDigits[ FindRoot[ Exp[x/2] == 1 +  Exp[-x/2] , {x, 0}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *) PROG (PARI) 2*asinh(1/2) \\ Michel Marcus, Jun 24 2018, after A002390 CROSSREFS Cf. A001622, A002390, A104457, A202537, A202543. Sequence in context: A154899 A335563 A011219 * A188528 A243257 A194182 Adjacent sequences:  A202540 A202541 A202542 * A202544 A202545 A202546 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 21 2011 EXTENSIONS Typo in name fixed by Jean-François Alcover, Feb 27 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 20:15 EDT 2022. Contains 353876 sequences. (Running on oeis4.)