login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201908
Irregular triangle of 2^k mod (2n-1).
12
0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
OFFSET
1,3
COMMENTS
The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).
Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if 0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1. E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.
REFERENCES
Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25
LINKS
FORMULA
T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
---------------------------------------------------------
1: 0
2: 1 2
3: 1 2 4 3
4: 1 2 4
5: 1 2 4 8 7 5
6: 1 2 4 8 5 10 9 7 3 6
7: 1 2 4 8 3 6 12 11 9 5 10 7
8: 1 2 4 8
9: 1 2 4 8 16 15 13 9
10: 1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10
... reformatted by Wolfdieter Lang, Jul 29 2020.
MATHEMATICA
nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1, 1]]; Take[tm, len-1]], {n, 1, nn, 2}]]
PROG
(GAP) R:=List([0..72], n->OrderMod(2, 2*n+1));;
Flat(Concatenation([0], List([2..11], n->List([0..R[n]-1], k->PowerMod(2, k, 2*n-1))))); # Muniru A Asiru, Feb 02 2019
CROSSREFS
Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).
Sequence in context: A333442 A319563 A201912 * A337712 A256184 A120855
KEYWORD
nonn,easy,tabf
AUTHOR
T. D. Noe, Dec 07 2011
STATUS
approved