login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201908 Irregular triangle of 2^k mod (2n-1). 10
0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).

Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if  0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1.  E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.

REFERENCES

Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25

LINKS

T. D. Noe, Rows n = 1..100, flattened

FORMULA

T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.

T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020

EXAMPLE

The irregular triangle T(n, k) begins:

n\k  0 1 2 3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 ...

---------------------------------------------------------

1:   0

2:   1 2

3:   1 2 4 3

4:   1 2 4

5:   1 2 4 8  7  5

6:   1 2 4 8  5 10  9  7 3  6

7:   1 2 4 8  3  6 12 11 9  5 10  7

8:   1 2 4 8

9:   1 2 4 8 16 15 13  9

10:  1 2 4 8 16 13  7 14 9 18 17 15 11  3  6 12  5 10

... reformatted by Wolfdieter Lang, Jul 29 2020.

MATHEMATICA

nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1, 1]]; Take[tm, len-1]], {n, 1, nn, 2}]]

PROG

(GAP) R:=List([0..72], n->OrderMod(2, 2*n+1));;

Flat(Concatenation([0], List([2..11], n->List([0..R[n]-1], k->PowerMod(2, k, 2*n-1))))); # Muniru A Asiru, Feb 02 2019

CROSSREFS

Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).

Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).

Sequence in context: A333442 A319563 A201912 * A337712 A256184 A120855

Adjacent sequences:  A201905 A201906 A201907 * A201909 A201910 A201911

KEYWORD

nonn,easy,tabf

AUTHOR

T. D. Noe, Dec 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 01:46 EDT 2021. Contains 347596 sequences. (Running on oeis4.)