login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A070336
a(n) = 2^n mod 25.
3
1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-10) + a(n-11).
G.f.: (1+x+2*x^2+4*x^3+8*x^4-9*x^5+7*x^6 -11*x^7+3*x^8+6*x^9+13*x^10)/ ((1-x) * (x^ 2+1) * (x^8-x^6+x^4-x^2+1)). (End)
a(n) = a(n-20). - Franz Vrabec, Dec 06 2011
MATHEMATICA
PowerMod[2, Range[0, 75], 25] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24}, 75] (* Harvey P. Dale, Jun 20 2011 *)
PROG
(Sage) [power_mod(2, n, 25)for n in range(0, 74)] # Zerinvary Lajos, Nov 03 2009
(PARI) a(n)=lift(Mod(2, 25)^n) \\ Charles R Greathouse IV, Mar 22 2016
(GAP) a:=List([0..70], n->PowerMod(2, n, 25));; Print(a); # Muniru A Asiru, Jan 28 2019
CROSSREFS
Sequence in context: A333492 A228845 A228846 * A348433 A053026 A375635
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved