login
A201909
Irregular triangle of 3^k mod prime(n).
7
1, 0, 1, 3, 4, 2, 1, 3, 2, 6, 4, 5, 1, 3, 9, 5, 4, 1, 3, 9, 1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13, 1, 3, 9, 4, 12, 13, 16, 2, 6, 18, 8, 1, 3, 9, 27, 23, 11, 4, 12, 7, 21, 5, 15
OFFSET
1,4
COMMENTS
The row lengths are in A062117. Except for the second row, the first term of each row is 1. Many sequences are in this one: starting at A036119 (mod 17) and A070341 (mod 11).
LINKS
EXAMPLE
The first 9 rows are:
1
0
1, 3, 4, 2
1, 3, 2, 6, 4, 5
1, 3, 9, 5, 4
1, 3, 9
1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6
1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13
1, 3, 9, 4, 12, 13, 16, 2, 6, 18, 8
MATHEMATICA
nn = 10; p = 3; t = p^Range[0, Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1, 1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]
PROG
(GAP) P:=Filtered([1..350], IsPrime);;
R:=List([1..Length(P)], n->OrderMod(7, P[n]));;
Flat(Concatenation([1, 1, 1, 2, 4, 3, 0], List([5..10], n->List([0..R[n]-1], k->PowerMod(7, k, P[n]))))); # Muniru A Asiru, Feb 01 2019
CROSSREFS
Cf. A062117, A201908 (2^k), A201910 (5^k), A201911 (7^k).
Cf. A070352 (5), A033940 (7), A070341 (11), A168399 (13), A036119 (17), A070342 (19), A070356 (23), A070344 (29), A036123 (31), A070346 (37), A070361 (41), A036126 (43), A070364 (47), A036134 (79), A036136 (89), A036142 (113), A036143 (127), A036145 (137), A036158 (199), A036160 (223).
Sequence in context: A105825 A238570 A145425 * A070352 A227216 A239678
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Dec 07 2011
STATUS
approved