login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036136
a(n) = 3^n mod 89.
3
1, 3, 9, 27, 81, 65, 17, 51, 64, 14, 42, 37, 22, 66, 20, 60, 2, 6, 18, 54, 73, 41, 34, 13, 39, 28, 84, 74, 44, 43, 40, 31, 4, 12, 36, 19, 57, 82, 68, 26, 78, 56, 79, 59, 88, 86, 80, 62, 8, 24, 72, 38, 25, 75, 47, 52, 67, 23
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
From G. C. Greubel, Oct 17 2018: (Start)
a(n) = a(n-1) - a(n-44) + a(n-45).
a(n+88) = a(n). (End)
MAPLE
[ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[3, Range[0, 100], 89] (* G. C. Greubel, Oct 17 2018 *)
PROG
(PARI) a(n)=lift(Mod(3, 89)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(3, n, 89): n in [0..100]]; // G. C. Greubel, Oct 17 2018
(Python) for n in range(0, 100): print(int(pow(3, n, 89)), end=' ') # Stefano Spezia, Oct 17 2018
(GAP) List([0..60], n->PowerMod(3, n, 89)); # Muniru A Asiru, Oct 17 2018
CROSSREFS
Cf. A000244 (3^n).
Sequence in context: A329023 A001218 A036158 * A271350 A057262 A057232
KEYWORD
nonn,easy
STATUS
approved