OFFSET
1,2
COMMENTS
From Robert Israel, Jan 02 2019: (Start)
All terms are odd, and none are divisible by 5, 7 or 13.
If p is a prime > 3 that divides 8^(3^k)+9^(3^k)+10^(3^k), then 3^k*p is in the sequence. (End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..53
MAPLE
select(t -> 8&^t + 9&^t + 10&^t mod t = 0, [seq(seq(10*i+j), j=[1, 3, 7, 9]), i=0..10^6)]); # Robert Israel, Jan 02 2019
MATHEMATICA
Select[ Range[ 10^6 ], Mod[ PowerMod[ 10, #, # ] + PowerMod[ 9, #, # ] + PowerMod[ 8, #, # ], # ] == 0 & ]
Select[Range[5*10^6], Divisible[Total[PowerMod[{10, 9, 8}, #, #]], #]&] (* Harvey P. Dale, Feb 04 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 20 2000
EXTENSIONS
More terms from Harvey P. Dale, Feb 04 2015
STATUS
approved