login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036137
a(n) = 5^n mod 97.
3
1, 5, 25, 28, 43, 21, 8, 40, 6, 30, 53, 71, 64, 29, 48, 46, 36, 83, 27, 38, 93, 77, 94, 82, 22, 13, 65, 34, 73, 74, 79, 7, 35, 78, 2, 10, 50, 56, 86, 42, 16, 80, 12, 60, 9, 45, 31, 58, 96, 92, 72, 69, 54, 76, 89, 57, 91, 67
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
From G. C. Greubel, Oct 17 2018: (Start)
a(n) = a(n-1) - a(n-48) + a(n-49).
a(n+96) = a(n). (End)
EXAMPLE
As 5^5 = 3125 = k * 97 + 21 for some k and 0 <= 21 < 97, a(5) = 21. - David A. Corneth, Oct 17 2018
MAPLE
[ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[5, Range[0, 100], 97] (* G. C. Greubel, Oct 17 2018 *)
PROG
(PARI) a(n)=lift(Mod(5, 97)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Python) for n in range(0, 100): print(int(pow(5, n, 97)), end=' ') # Stefano Spezia, Oct 17 2018
(GAP) List([0..60], n->PowerMod(5, n, 97)); # Muniru A Asiru, Oct 17 2018
(Magma) [Modexp(5, n, 97): n in [0..100]]; // G. C. Greubel, Oct 18 2018
CROSSREFS
Cf. A000351 (5^n).
Sequence in context: A136912 A137111 A137110 * A070380 A068574 A000350
KEYWORD
nonn,easy
STATUS
approved