login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^n mod 97.
3

%I #30 Sep 08 2022 08:44:52

%S 1,5,25,28,43,21,8,40,6,30,53,71,64,29,48,46,36,83,27,38,93,77,94,82,

%T 22,13,65,34,73,74,79,7,35,78,2,10,50,56,86,42,16,80,12,60,9,45,31,58,

%U 96,92,72,69,54,76,89,57,91,67

%N a(n) = 5^n mod 97.

%D I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

%H Vincenzo Librandi, <a href="/A036137/b036137.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_49">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).

%F From _G. C. Greubel_, Oct 17 2018: (Start)

%F a(n) = a(n-1) - a(n-48) + a(n-49).

%F a(n+96) = a(n). (End)

%e As 5^5 = 3125 = k * 97 + 21 for some k and 0 <= 21 < 97, a(5) = 21. - _David A. Corneth_, Oct 17 2018

%p [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];

%t PowerMod[5, Range[0, 100], 97] (* _G. C. Greubel_, Oct 17 2018 *)

%o (PARI) a(n)=lift(Mod(5,97)^n) \\ _Charles R Greathouse IV_, Mar 22 2016

%o (Python) for n in range(0, 100): print(int(pow(5, n, 97)), end=' ') # _Stefano Spezia_, Oct 17 2018

%o (GAP) List([0..60],n->PowerMod(5,n,97)); # _Muniru A Asiru_, Oct 17 2018

%o (Magma) [Modexp(5, n, 97): n in [0..100]]; // _G. C. Greubel_, Oct 18 2018

%Y Cf. A000351 (5^n).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_