login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036129
a(n) = 2^n mod 59.
4
1, 2, 4, 8, 16, 32, 5, 10, 20, 40, 21, 42, 25, 50, 41, 23, 46, 33, 7, 14, 28, 56, 53, 47, 35, 11, 22, 44, 29, 58, 57, 55, 51, 43, 27, 54, 49, 39, 19, 38, 17, 34, 9, 18, 36, 13, 26, 52, 45, 31, 3, 6, 12, 24, 48, 37, 15
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
a(n) = a(n+58). - R. J. Mathar, Jun 04 2016
a(n) = a(n-1) - a(n-29) + a(n-30). - G. C. Greubel, Oct 17 2018
MAPLE
i := pi(59) ; [ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[2, Range[0, 100], 59] (* G. C. Greubel, Oct 17 2018 *)
PROG
(PARI) a(n)=lift(Mod(2, 59)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(2, n, 59): n in [0..100]]; // G. C. Greubel, Oct 17 2018
(GAP) List([0..70], n->PowerMod(2, n, 59)); # Muniru A Asiru, Jan 30 2019
CROSSREFS
Sequence in context: A335836 A122169 A114183 * A319303 A088976 A016020
KEYWORD
nonn,easy
STATUS
approved