login
A200785
T(n,k) is the number of arrays of n+2 elements from {0,1,...,k} with no two consecutive ascents.
11
8, 26, 16, 60, 75, 32, 115, 225, 216, 64, 196, 530, 840, 622, 128, 308, 1071, 2425, 3136, 1791, 256, 456, 1946, 5796, 11100, 11704, 5157, 512, 645, 3270, 12152, 31395, 50775, 43681, 14849, 1024, 880, 5175, 23136, 75992, 169884, 232275, 163020, 42756, 2048
OFFSET
1,1
COMMENTS
All the conjectured formulas are true, and follow from the Burstein-Mansour paper. - N. J. A. Sloane, May 21 2013
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
FORMULA
T(n-2,k) = \sum_{L=0}^n (-1)^L / L! * \sum_{M=0}^{min(L,[(n-L)/2])} binomial(n-L-M,M) * M! * (k+1)^(n-L-2*M) B_{L,M}(x_1,x_2,...), where B_{L,M}() are Bell polynomials, x_i = binomial(k+1,i+2) * i! * f(i), i=1,2,..., and f(i) has period of length 6: [0,1,1,0,-1,-1] (i.e., f(0)=0, f(1)=1, etc.). This formula implies that for a fixed n, T(n,k) is a polynomial in k, which is easy to compute. - Max Alekseyev, Dec 12 2011
Empirical formulas for columns:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -10*a(n-3) +5*a(n-4)
k=5: a(n) = 6*a(n-1) -20*a(n-3) +15*a(n-4) -a(n-6)
k=6: a(n) = 7*a(n-1) -35*a(n-3) +35*a(n-4) -7*a(n-6) +a(n-7)
k=7: a(n) = 8*a(n-1) -56*a(n-3) +70*a(n-4) -28*a(n-6) +8*a(n-7)
Empirical recurrence for general column k:
0 = sum{i=0..floor(k/3) (binomial(k+1,3*i+1)*T(n-(3*i+1),k))} - sum{i=0..floor((k+1)/3) (binomial(k+1,3*i)*T(n-3*i,k))}
Formulae for rows:
T(1,k) = (5/6)*k^3 + 3*k^2 + (19/6)*k + 1
T(2,k) = (17/24)*k^4 + (43/12)*k^3 + (151/24)*k^2 + (53/12)*k + 1
T(3,k) = (7/12)*k^5 + (47/12)*k^4 + (39/4)*k^3 + (133/12)*k^2 + (17/3)*k + 1
T(4,k) = (349/720)*k^6 + (321/80)*k^5 + (1883/144)*k^4 + (1013/48)*k^3 + (3139/180)*k^2 + (413/60)*k + 1
T(5,k) = (2017/5040)*k^7 + (1427/360)*k^6 + (5759/360)*k^5 + (607/18)*k^4 + (28459/720)*k^3 + (9113/360)*k^2 + (848/105)*k + 1
T(6,k) = (6679/20160)*k^8 + (4799/1260)*k^7 + (26449/1440)*k^6 + (2162/45)*k^5 + (212153/2880)*k^4 + (6019/90)*k^3 + (174571/5040)*k^2 + (3893/420)*k + 1
T(7,k) = (99377/362880)*k^9 + (48247/13440)*k^8 + (243673/12096)*k^7 + (60529/960)*k^6 + (2076437/17280)*k^5 + (274529/1920)*k^4 + (952027/9072)*k^3 + (152461/3360)*k^2 + (26399/2520)*k + 1
EXAMPLE
Table starts
....8.....26......60.......115.......196........308.........456.........645
...16.....75.....225.......530......1071.......1946........3270........5175
...32....216.....840......2425......5796......12152.......23136.......40905
...64....622....3136.....11100.....31395......75992......164004......324087
..128...1791...11704.....50775....169884.....474566.....1160616.....2562633
..256...5157...43681....232275....919413....2964416.....8216484....20273247
..512..14849..163020...1062500...4975322...18514405....58154912...160338680
.1024..42756..608400...4860250..26924106..115637431...411637168..1268210421
.2048.123111.2270580..22232375.145698840..722234149..2913595712.10030582998
.4096.354484.8473921.101698250.788446400.4510869636.20622837480.79335475611
Some arrays for n=4, k=3:
..0....1....0....0....1....0....3....3....0....1....3....0....2....2....2....2
..3....0....2....2....0....2....0....0....3....1....0....0....0....3....3....3
..2....3....2....2....2....2....3....3....1....0....1....0....2....1....3....3
..1....0....2....1....0....0....2....2....2....2....1....2....2....0....0....2
..0....3....0....0....1....2....1....2....0....0....3....2....0....3....1....3
..3....3....0....3....0....2....3....2....0....3....0....0....2....2....1....3
CROSSREFS
Column 1 is A000079
Column 2 is A076264
Column 3 is A072335
Row 1 is A002413
Cf. A200781.
Sequence in context: A060718 A060743 A029617 * A120743 A345205 A063560
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 22 2011
STATUS
approved