login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200784
Number of 0..7 arrays x(0..n+1) of n+2 elements without any two consecutive increases.
1
456, 3270, 23136, 164004, 1160616, 8216484, 58154912, 411637168, 2913595712, 20622837480, 145970677056, 1033197881712, 7313093248992, 51762926098992, 366383987227392, 2593308396911680, 18355737644921600, 129924040926296800
OFFSET
1,1
COMMENTS
Column 7 of A200785.
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
FORMULA
Empirical: a(n) = 8*a(n-1) -56*a(n-3) +70*a(n-4) -28*a(n-6) +8*a(n-7).
Empirical g.f.: 2*x*(228 - 189*x - 1512*x^2 + 2226*x^3 - 108*x^4 - 864*x^5 + 256*x^6) / ((1 - 2*x)*(1 + 2*x - 2*x^2)*(1 - 8*x + 6*x^2 + 4*x^3 - 2*x^4)). - Colin Barker, Oct 15 2017
EXAMPLE
Some solutions for n=3
..7....5....7....4....5....2....3....7....5....5....5....6....1....5....4....4
..0....5....4....2....3....2....1....4....0....5....7....4....0....5....4....4
..0....5....4....1....6....6....3....5....0....4....6....6....6....7....4....4
..0....1....7....1....5....5....0....0....6....1....6....3....0....0....4....7
..1....4....0....6....5....2....6....5....3....4....2....4....1....2....4....3
CROSSREFS
Sequence in context: A265493 A265600 A222552 * A077578 A329756 A268162
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2011
STATUS
approved