OFFSET
0,2
COMMENTS
Number of words of length n over an alphabet of size 5 which do not contain any strictly decreasing factor (consecutive subword) of length 3. For alphabets of size 2, 3, 4, 6 see A000079, A076264, A072335, A200782.
Equivalently, number of 0..4 arrays x(0..n-1) of n elements without any two consecutive increases.
LINKS
R. H. Hardin and N. J. A. Sloane, Table of n, a(n) for n = 0..249 [The first 210 terms were computed by R. H. Hardin]
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
Index entries for linear recurrences with constant coefficients, signature (5,0,-10,5).
FORMULA
a(n) = 5*a(n-1) - 10*a(n-3) + 5*a(n-4).
EXAMPLE
Some solutions for n=5:
..1....3....4....0....1....0....4....0....2....1....4....1....2....2....4....4
..3....4....4....2....1....0....3....3....1....4....1....1....4....4....3....3
..3....1....0....2....0....2....0....3....3....0....4....3....0....1....4....4
..2....0....2....4....4....0....3....2....0....0....3....2....0....2....1....3
..4....4....2....2....0....3....3....2....1....0....4....1....3....1....0....2
PROG
(PARI) Vec(1/(1-5*x+10*x^3-5*x^4) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2011
EXTENSIONS
Edited by N. J. A. Sloane, May 21 2013
STATUS
approved