login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200778
Least k > 0 such that k*p*(k*p-1)-1 and k*p*(k*p-1)+1 is a twin prime pair, where p=prime(n).
2
2, 1, 5, 1, 2, 3, 3, 13, 9, 8, 10, 43, 69, 15, 17, 50, 3, 42, 1, 2, 3, 3, 20, 33, 3, 44, 7, 35, 49, 9, 6, 189, 15, 1, 113, 21, 7, 154, 3, 3, 18, 12, 29, 33, 20, 6, 27, 3, 2, 3, 23, 11, 10, 12, 18, 137, 41, 12, 36, 29, 54, 17, 10, 59, 55, 3, 51, 36
OFFSET
1,1
COMMENTS
Limit_{N->oo} (Sum_{n=1..N} k(n)) / (Sum_{n=1..N} log(p(n))^2) = 1.
EXAMPLE
2*2*(2*2 - 1) - 1 = 11, twin prime of 13, so a(1)=2.
MAPLE
A200778 := proc(n)
p := ithprime(n) ;
for k from 1 do
if isprime(k*p*(k*p-1)-1) and isprime(k*p*(k*p-1)+1) then
return k;
end if;
end do:
end proc:
seq(A200778(n), n=1..80) ; # R. J. Mathar, Nov 26 2011
MATHEMATICA
lktpp[n_]:=Module[{k=1, p=Prime[n]}, While[AnyTrue[k*p(k*p-1)+{1, -1}, CompositeQ], k++]; k]; Array[lktpp, 70] (* Harvey P. Dale, May 03 2019 *)
CROSSREFS
Cf. A200654.
Sequence in context: A222481 A351954 A353577 * A345355 A132601 A047818
KEYWORD
nonn
AUTHOR
Pierre CAMI, Nov 22 2011
STATUS
approved