login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200787
Number of 0..n arrays x(0..4) of 5 elements without any two consecutive increases.
1
32, 216, 840, 2425, 5796, 12152, 23136, 40905, 68200, 108416, 165672, 244881, 351820, 493200, 676736, 911217, 1206576, 1573960, 2025800, 2575881, 3239412, 4033096, 4975200, 6085625, 7385976, 8899632, 10651816, 12669665, 14982300
OFFSET
1,1
COMMENTS
Row 3 of A200785.
LINKS
FORMULA
Empirical: a(n) = (7/12)*n^5 + (47/12)*n^4 + (39/4)*n^3 + (133/12)*n^2 + (17/3)*n + 1.
Conjectures from Colin Barker, Oct 15 2017: (Start)
G.f.: x*(32 + 24*x + 24*x^2 - 15*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = (1 + n)^2*(12 + 44*n + 33*n^2 + 7*n^3) / 12 .
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=3
..2....1....3....2....2....3....1....3....1....1....2....1....0....1....2....0
..0....0....3....3....1....2....3....1....3....2....0....0....3....3....2....0
..0....1....1....3....3....1....3....1....0....0....0....2....3....2....3....0
..3....1....1....1....1....0....3....2....3....3....3....2....1....1....0....0
..0....1....1....0....2....3....3....1....1....0....1....0....3....1....2....3
CROSSREFS
Sequence in context: A125342 A126500 A160538 * A250354 A146089 A250232
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2011
STATUS
approved