

A060743


Least k such that gcd( p(k), q(k) ) is n, where p() is the unrestricted partition function (A000041) and q is the distinct partition function (A000009).


1



1, 8, 26, 11, 7, 46, 33, 94, 277, 130, 85, 180, 173, 47, 434, 131, 60, 297, 1175, 569, 40, 305, 1243, 142, 1024, 213, 169, 775, 988, 900, 1622, 262, 470, 844, 812, 2391, 9480, 2607, 1624, 441, 1061, 2845, 1686, 501, 749, 109, 6958, 449, 572, 174, 178, 2887
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..52.


MATHEMATICA

Do[ d = GCD[ PartitionsP[ n ], PartitionsQ[ n ]]; If[ a[[ d ]] == 0, a[[ d ]] = n ], {n, 1, 10400} ]; Table[ a[[ n ]], {n, 1, 60} ]
With[{p=Table[GCD[PartitionsP[n], PartitionsQ[n]], {n, 10000}]}, Table[ Position[ p, n, 1, 1], {n, 60}]]//Flatten (* Harvey P. Dale, Nov 19 2019 *)


CROSSREFS

Sequence in context: A004246 A220535 A060718 * A029617 A200785 A120743
Adjacent sequences: A060740 A060741 A060742 * A060744 A060745 A060746


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Apr 23 2001


STATUS

approved



