

A200243


Decimal expansion of sqrt(192).


1



1, 3, 8, 5, 6, 4, 0, 6, 4, 6, 0, 5, 5, 1, 0, 1, 8, 3, 4, 8, 2, 1, 9, 5, 7, 0, 7, 3, 2, 0, 4, 6, 9, 7, 8, 9, 3, 5, 5, 4, 2, 4, 4, 2, 0, 3, 0, 4, 8, 3, 0, 4, 5, 0, 2, 4, 4, 4, 6, 4, 5, 5, 8, 3, 5, 6, 1, 5, 4, 6, 4, 1, 3, 5, 2, 7, 0, 4, 0, 0, 2, 9, 6, 6, 4, 9, 1, 6, 9, 4, 9, 4, 0, 5, 7, 9, 8, 8, 6, 0, 5, 4, 0, 5, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Bezdek asks: if the Euclidean 3space is partitioned into convex cells each containing a unit ball, how should the shapes of the cells be designed to minimize the average surface area of the cells? He proves that the average surface area in question is always at least sqrt(192).


LINKS

Table of n, a(n) for n=2..106.
Karoly Bezdek, On a strong version of the Kepler conjecture, arXiv:1111.3092v1 [math.MG], Nov 14, 2011.


EXAMPLE

13.856406460551018348219570732046978935542442030483045024446455835615.... = 8*A002194.


MATHEMATICA

RealDigits[Sqrt[192], 10, 120][[1]] (* Harvey P. Dale, May 21 2018 *)


PROG

(PARI) sqrt(192) \\ Charles R Greathouse IV, Nov 14 2011


CROSSREFS

Sequence in context: A078361 A193014 A155676 * A236229 A258985 A077151
Adjacent sequences: A200240 A200241 A200242 * A200244 A200245 A200246


KEYWORD

nonn,easy,cons


AUTHOR

Jonathan Vos Post, Nov 14 2011


STATUS

approved



