login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200240 Decimal expansion of greatest x satisfying 3*x^2-3*cos(x)=2*sin(x). 4
1, 0, 3, 9, 8, 2, 9, 6, 9, 3, 3, 2, 4, 6, 0, 7, 5, 9, 6, 0, 7, 1, 7, 9, 3, 5, 3, 2, 1, 2, 0, 3, 8, 7, 7, 6, 2, 6, 4, 1, 3, 2, 0, 9, 3, 9, 9, 9, 6, 8, 7, 3, 4, 1, 4, 4, 0, 5, 9, 2, 6, 3, 0, 4, 7, 3, 9, 8, 1, 6, 8, 8, 9, 6, 2, 3, 0, 3, 5, 4, 8, 8, 6, 6, 3, 9, 1, 6, 5, 0, 2, 9, 3, 0, 7, 2, 3, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x: -0.63766115794607313411989545658819620...

greatest x: 1.039829693324607596071793532120387...

MATHEMATICA

a = 3; b = -3; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.64, -.63}, WorkingPrecision -> 110]

RealDigits[r]   (* A200239 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

RealDigits[r]   (* A200240 *)

PROG

(PARI) a=3; b=-3; c=2; solve(x=1.0, 1.1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A329238 A001226 A093498 * A199052 A021255 A229350

Adjacent sequences:  A200237 A200238 A200239 * A200241 A200242 A200243

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 16:04 EST 2019. Contains 329371 sequences. (Running on oeis4.)