login
A200241
Decimal expansion of least x satisfying 3*x^2 - 3*cos(x) = 4*sin(x), negated.
4
4, 9, 5, 5, 9, 4, 2, 3, 2, 7, 9, 8, 1, 1, 0, 8, 0, 3, 9, 6, 6, 6, 9, 4, 0, 8, 1, 3, 6, 0, 6, 6, 6, 2, 3, 4, 8, 1, 2, 3, 0, 0, 4, 8, 8, 5, 5, 2, 1, 1, 1, 9, 5, 6, 6, 1, 7, 6, 5, 0, 5, 3, 3, 1, 4, 8, 8, 0, 6, 1, 9, 9, 6, 4, 2, 7, 5, 6, 6, 0, 3, 9, 4, 8, 5, 9, 8, 0, 7, 7, 1, 0, 7, 1, 4, 6, 6, 2, 3
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.495594232798110803966694081360666...
greatest x: 1.2559670249437296288542832153976444...
MATHEMATICA
a = 3; b = -3; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110]
RealDigits[r] (* A200241 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
RealDigits[r] (* A200242 *)
PROG
(PARI) a=3; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
Cf. A199949.
Sequence in context: A011003 A344078 A200011 * A243710 A242610 A292484
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved