This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200241 Decimal expansion of least x satisfying 3*x^2 - 3*cos(x) = 4*sin(x), negated. 4
 4, 9, 5, 5, 9, 4, 2, 3, 2, 7, 9, 8, 1, 1, 0, 8, 0, 3, 9, 6, 6, 6, 9, 4, 0, 8, 1, 3, 6, 0, 6, 6, 6, 2, 3, 4, 8, 1, 2, 3, 0, 0, 4, 8, 8, 5, 5, 2, 1, 1, 1, 9, 5, 6, 6, 1, 7, 6, 5, 0, 5, 3, 3, 1, 4, 8, 8, 0, 6, 1, 9, 9, 6, 4, 2, 7, 5, 6, 6, 0, 3, 9, 4, 8, 5, 9, 8, 0, 7, 7, 1, 0, 7, 1, 4, 6, 6, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x: -0.495594232798110803966694081360666... greatest x: 1.2559670249437296288542832153976444... MATHEMATICA a = 3; b = -3; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110] RealDigits[r]   (* A200241 *) r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110] RealDigits[r]   (* A200242 *) PROG (PARI) a=3; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018 CROSSREFS Cf. A199949. Sequence in context: A070434 A011003 A200011 * A243710 A242610 A292484 Adjacent sequences:  A200238 A200239 A200240 * A200242 A200243 A200244 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 11:24 EDT 2019. Contains 328294 sequences. (Running on oeis4.)