login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200239 Decimal expansion of least x satisfying 3*x^2-3*cos(x)=2*sin(x). 4
6, 3, 7, 6, 6, 1, 1, 5, 7, 9, 4, 6, 0, 7, 3, 1, 3, 4, 1, 1, 9, 8, 9, 5, 4, 5, 6, 5, 8, 8, 1, 9, 6, 2, 0, 1, 3, 7, 3, 3, 9, 9, 2, 2, 8, 0, 7, 2, 7, 3, 3, 8, 6, 9, 5, 5, 6, 1, 0, 6, 2, 3, 0, 9, 0, 1, 0, 1, 4, 0, 5, 4, 5, 4, 4, 3, 3, 0, 7, 9, 6, 8, 0, 0, 1, 4, 3, 8, 4, 6, 5, 1, 0, 7, 1, 4, 4, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.63766115794607313411989545658819620...

greatest x: 1.039829693324607596071793532120387...

MATHEMATICA

a = 3; b = -3; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.64, -.63}, WorkingPrecision -> 110]

RealDigits[r]   (* A200239 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

RealDigits[r]   (* A200240 *)

PROG

(PARI) a=3; b=-3; c=2; solve(x=-.64, -.63, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A260660 A011191 A246730 * A097676 A251780 A249542

Adjacent sequences:  A200236 A200237 A200238 * A200240 A200241 A200242

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 11:02 EST 2019. Contains 329226 sequences. (Running on oeis4.)