login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x). 57
6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x).

Guide to related sequences, with graphs included in Mathematica programs:

a.... b.... c.... x

1.... 1.... 1.... A199429

1.... 1.... 2.... A199430

1.... 1.... 3.... A199431

1.... 2.... 1.... A199432

1.... 2.... 2.... A199433

1.... 2.... 3.... A199434

1.... 3.... 1.... A199435

1.... 3.... 2.... A199436

1.... 3.... 3.... A199437

2.... 1.... 1.... A199438

2.... 1.... 2.... A199439

2.... 1.... 3.... A199440

2.... 2.... 1.... A199441

2.... 2.... 3.... A199442

2.... 3.... 1.... A199443

2.... 3.... 2.... A199444

2.... 3.... 3.... A199445

2.... 1.... 1.... A199446

3.... 1.... 2.... A199447

3.... 1.... 3.... A199448

3.... 2.... 1.... A199449

3.... 2.... 2.... A199450

3.... 2.... 3.... A199451

3.... 3.... 1.... A199452

3.... 3.... 2.... A199453

1... -1.... 1.... A199454

1... -1.... 2.... A199455

1... -1.... 3.... A199456

1... -2... -3.... A199457

1... -2... -2.... A199458

1... -2... -1.... A199459

1... -2...  0.... A199460

1... -2...  1.... A199461

1... -2...  2.... A199462

1... -2...  3.... A199463

1... -3... -3.... A199464

1... -3... -2.... A199465

1... -3... -1.... A199466

1... -3...  0.... A199467

1... -3...  1.... A199468

1... -3...  2.... A199469

1... -3...  3.... A199470

2... -1...  1.... A199471

2... -1...  2.... A199472

2... -1...  3.... A199473

2... -2...  1.... A199503

2... -2...  3.... A199504

3... -1...  1.... A199505

2... -1...  2.... A199506

2... -1...  3.... A199507

2... -2...  1.... A199508

2... -2...  2.... A199509

2... -2...  3.... A199510

3... -3...  1.... A199511

3... -3...  2.... A199513

Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0.  We call the graph of z=g(u,v) an implicit surface of f.

For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

x=0.6434363641380261586420989143040131826874...

MATHEMATICA

(* Program 1:  A199429 *)

a = 1; b = 1; c = 1;

f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]

RealDigits[r]  (* A199429 *)

(* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *)

f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x];

t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}];

ListPlot3D[Flatten[t, 1]]  (* for A199429 *)

CROSSREFS

Cf. A199370, A199170, A198866, A198755, A198414, A197737.

Sequence in context: A245634 A182618 A118227 * A235509 A224927 A200104

Adjacent sequences:  A199426 A199427 A199428 * A199430 A199431 A199432

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 14:59 EST 2019. Contains 329979 sequences. (Running on oeis4.)