The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x). 57
 6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x). Guide to related sequences, with graphs included in Mathematica programs: a.... b.... c.... x 1.... 1.... 1.... A199429 1.... 1.... 2.... A199430 1.... 1.... 3.... A199431 1.... 2.... 1.... A199432 1.... 2.... 2.... A199433 1.... 2.... 3.... A199434 1.... 3.... 1.... A199435 1.... 3.... 2.... A199436 1.... 3.... 3.... A199437 2.... 1.... 1.... A199438 2.... 1.... 2.... A199439 2.... 1.... 3.... A199440 2.... 2.... 1.... A199441 2.... 2.... 3.... A199442 2.... 3.... 1.... A199443 2.... 3.... 2.... A199444 2.... 3.... 3.... A199445 2.... 1.... 1.... A199446 3.... 1.... 2.... A199447 3.... 1.... 3.... A199448 3.... 2.... 1.... A199449 3.... 2.... 2.... A199450 3.... 2.... 3.... A199451 3.... 3.... 1.... A199452 3.... 3.... 2.... A199453 1... -1.... 1.... A199454 1... -1.... 2.... A199455 1... -1.... 3.... A199456 1... -2... -3.... A199457 1... -2... -2.... A199458 1... -2... -1.... A199459 1... -2... 0.... A199460 1... -2... 1.... A199461 1... -2... 2.... A199462 1... -2... 3.... A199463 1... -3... -3.... A199464 1... -3... -2.... A199465 1... -3... -1.... A199466 1... -3... 0.... A199467 1... -3... 1.... A199468 1... -3... 2.... A199469 1... -3... 3.... A199470 2... -1... 1.... A199471 2... -1... 2.... A199472 2... -1... 3.... A199473 2... -2... 1.... A199503 2... -2... 3.... A199504 3... -1... 1.... A199505 2... -1... 2.... A199506 2... -1... 3.... A199507 2... -2... 1.... A199508 2... -2... 2.... A199509 2... -2... 3.... A199510 3... -3... 1.... A199511 3... -3... 2.... A199513 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS EXAMPLE x=0.6434363641380261586420989143040131826874... MATHEMATICA (* Program 1: A199429 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] RealDigits[r] (* A199429 *) (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *) f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}]; ListPlot3D[Flatten[t, 1]] (* for A199429 *) CROSSREFS Cf. A199370, A199170, A198866, A198755, A198414, A197737. Sequence in context: A245634 A182618 A118227 * A235509 A346696 A224927 Adjacent sequences: A199426 A199427 A199428 * A199430 A199431 A199432 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 05:03 EST 2023. Contains 359947 sequences. (Running on oeis4.)