This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x). 57
 6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*sin(x)=c*cos(x). Guide to related sequences, with graphs included in Mathematica programs: a.... b.... c.... x 1.... 1.... 1.... A199429 1.... 1.... 2.... A199430 1.... 1.... 3.... A199431 1.... 2.... 1.... A199432 1.... 2.... 2.... A199433 1.... 2.... 3.... A199434 1.... 3.... 1.... A199435 1.... 3.... 2.... A199436 1.... 3.... 3.... A199437 2.... 1.... 1.... A199438 2.... 1.... 2.... A199439 2.... 1.... 3.... A199440 2.... 2.... 1.... A199441 2.... 2.... 3.... A199442 2.... 3.... 1.... A199443 2.... 3.... 2.... A199444 2.... 3.... 3.... A199445 2.... 1.... 1.... A199446 3.... 1.... 2.... A199447 3.... 1.... 3.... A199448 3.... 2.... 1.... A199449 3.... 2.... 2.... A199450 3.... 2.... 3.... A199451 3.... 3.... 1.... A199452 3.... 3.... 2.... A199453 1... -1.... 1.... A199454 1... -1.... 2.... A199455 1... -1.... 3.... A199456 1... -2... -3.... A199457 1... -2... -2.... A199458 1... -2... -1.... A199459 1... -2...  0.... A199460 1... -2...  1.... A199461 1... -2...  2.... A199462 1... -2...  3.... A199463 1... -3... -3.... A199464 1... -3... -2.... A199465 1... -3... -1.... A199466 1... -3...  0.... A199467 1... -3...  1.... A199468 1... -3...  2.... A199469 1... -3...  3.... A199470 2... -1...  1.... A199471 2... -1...  2.... A199472 2... -1...  3.... A199473 2... -2...  1.... A199503 2... -2...  3.... A199504 3... -1...  1.... A199505 2... -1...  2.... A199506 2... -1...  3.... A199507 2... -2...  1.... A199508 2... -2...  2.... A199509 2... -2...  3.... A199510 3... -3...  1.... A199511 3... -3...  2.... A199513 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0.  We call the graph of z=g(u,v) an implicit surface of f. For an example related to A199429, take f(x,u,v)=x^2+u*x*sin(x)-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS EXAMPLE x=0.6434363641380261586420989143040131826874... MATHEMATICA (* Program 1:  A199429 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] RealDigits[r]  (* A199429 *) (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *) f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}]; ListPlot3D[Flatten[t, 1]]  (* for A199429 *) CROSSREFS Cf. A199370, A199170, A198866, A198755, A198414, A197737. Sequence in context: A245634 A182618 A118227 * A235509 A224927 A200104 Adjacent sequences:  A199426 A199427 A199428 * A199430 A199431 A199432 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 14:59 EST 2019. Contains 329979 sequences. (Running on oeis4.)