OFFSET
0,1
COMMENTS
Cahen proved that his constant is irrational. Davison and Shallit proved that it is transcendental and computed its simple continued fraction expansion A006280. - Jonathan Sondow, Aug 17 2014
Named after the French mathematician Eugène Cahen (1865 - 1941). - Amiram Eldar, Oct 29 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.7, p. 436.
LINKS
Eugène Cahen, Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues, Nouvelles Annales de Mathématiques, Vol. 10 (1891), pp. 508-514.
J. L. Davison and Jeffrey Shallit, Continued Fractions for Some Alternating Series, Monatsh. Math., Vol. 111, No. 2 (1991), pp. 119-126, alternative link.
Eric Weisstein's World of Mathematics, Cahen's Constant.
Wikipedia, Cahen's constant.
FORMULA
Equals Sum_{k >= 0} (-1)^k/(A000058(k)-1).
Equals 1 + (1/2) * Sum_{n>=0} (-1)^(n+1)/A129871(n). - Bernard Schott, Apr 06 2021
EXAMPLE
0.6434105462883380261...
MATHEMATICA
a[0] = 2; a[n_] := a[n] = a[n-1]^2 - a[n-1]+1; kmax = 1; FixedPoint[ RealDigits[ Sum[(-1)^k/(a[k]-1), {k, 0, kmax += 10}], 10, 105][[1]]&, kmax] (* Jean-François Alcover, Jul 28 2011, updated Jun 19 2014 *)
Most@First@RealDigits@N[x=1; 1+Sum[x=x(1+x); (-1)^k/x, {k, 1, 9}], 106] (* Oliver Seipel, Aug 25 2024, after Charles R Greathouse IV *)
Most@First@RealDigits@N[x=1; 1/2+Sum[x=x(1+x)(1+x+x^2); 1/(x+1), {k, 1, 4}], 106] (* Oliver Seipel, Aug 25 2024 *)
PROG
(PARI) C=1; 1+suminf(k=1, C+=C^2; (-1)^k/C) \\ Charles R Greathouse IV, Jul 14 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 16 2006
STATUS
approved