login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118229
Triangle, read by rows, equal to the matrix inverse of triangle A054431; the inverse transformation that obtains {a(n)} from b(n) = Sum_{1<=k<=n, gcd(k,n)=1} a(k).
2
1, -1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, 0, 0, -1, -1, 1, 1, 0, -1, 0, -1, 0, 1, -1, 0, 2, -1, 0, 0, -1, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 1, 0, -1, 1, 0, -1, 1, -1, -1, 1, -1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 0, 1, 0, 0, -1, -1, 1, 3, 0, -2, 0, -2, 0, 2, 0, -1, 0, -1, 0, 1, -3, 0, 1, 0, 3, 0, -1, -1, 1, 0, 0, 0, -1, 1
OFFSET
1,31
COMMENTS
Column 1 is A096433. Column 2 = [0,1,0,-1,0,0,0,...(zero for n>4)]. Column 3 is A118230.
LINKS
Hamed Mousavi, Maxie D. Schmidt, Factorization Theorems for Relatively Prime Divisor Sums, GCD Sums and Generalized Ramanujan Sums, arXiv:1810.08373 [math.NT], 2018. See Figure 2.1, p. 6.
FORMULA
For column k > 1: Sum_{i = 2..n, gcd(n,i) = 1} T(i,k) = 1 when n = k+1, 0 elsewhere; for column k = 1: Sum_{i = 2..n, gcd(n,i) = 1} T(i,1) = 1 when n = 1 or 2, 0 elsewhere.
EXAMPLE
Describes a sequence transformation as follows.
Say we have the arbitrary sequence {a(k)}.
We define {b(k)}, based on {a(k)}, by:
b(n) = Sum_{1<=k<=n, gcd(k,n)=1} a(k).
So given {b(k)} (which must have b(1) = b(2)), how do we get the sequence {a(k)}?
If a(n) = Sum_{k >= 2} b(k) * T(n,k), then there is a triangular array {T(n,k)} which begins as follows:
1;
-1, 1;
-1, 0, 1;
1, -1, -1, 1;
-1, 0, 0, 0, 1;
1, 0, 0, -1, -1, 1;
1, 0, -1, 0, -1, 0, 1;
-1, 0, 2, -1, 0, 0, -1, 1;
-1, 0, 0, 0, 1, 0, -1, 0, 1;
1, 0, -1, 1, 0, -1, 1, -1, -1, 1;
-1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1;
1, 0, -1, 0, 0, 0, 1, 0, 0, -1, -1, 1;
3, 0, -2, 0, -2, 0, 2, 0, -1, 0, -1, 0, 1;
-3, 0, 1, 0, 3, 0, -1, -1, 1, 0, 0, 0, -1, 1; ...
MATHEMATICA
M[n_] := M[n] = Inverse[Table[If[r >= c, If[GCD[r-c+1, c] == 1, 1, 0], 0], {r, 1, n}, {c, 1, n}]];
T[n_, k_] := If[n<k || k<0, 0, M[n][[n, k]]];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 27 2018, from PARI *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, (matrix(n, n, r, c, if(r>=c, if(gcd(r-c+1, c)==1, 1, 0)))^-1)[n, k])
CROSSREFS
Cf. A054431 (matrix inverse), A096433 (column 1), A118230 (column 3).
Sequence in context: A321917 A115201 A354100 * A172250 A309047 A255317
KEYWORD
sign,tabl
AUTHOR
STATUS
approved