

A199460


Decimal expansion of x>0 satisfying x=2*sin(x).


5



1, 8, 9, 5, 4, 9, 4, 2, 6, 7, 0, 3, 3, 9, 8, 0, 9, 4, 7, 1, 4, 4, 0, 3, 5, 7, 3, 8, 0, 9, 3, 6, 0, 1, 6, 9, 1, 7, 5, 1, 3, 4, 6, 6, 2, 7, 3, 8, 5, 4, 2, 3, 9, 6, 2, 0, 0, 0, 1, 7, 7, 4, 8, 9, 5, 9, 3, 2, 7, 8, 5, 4, 5, 3, 1, 8, 8, 7, 7, 2, 1, 5, 7, 8, 0, 4, 4, 5, 4, 5, 2, 9, 4, 0, 3, 7, 5, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A199429 for a guide to related sequences. The Mathematica program includes a graph.
A solution to the functional equation f'(z) = f(z+1)f(z1) is f(z) = exp(x*i*z).  JeanFrançois Alcover, Apr 04 2014


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

1.895494267033980947144035738093601691751...


MATHEMATICA

a = 1; b = 2; c = 0;
f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, Pi, Pi}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.89, 1.90}, WorkingPrecision > 110]
RealDigits[r] (* A199460 greatest of three roots *)


CROSSREFS

Cf. A199429.
Sequence in context: A029689 A201294 A199383 * A245772 A190289 A198119
Adjacent sequences: A199457 A199458 A199459 * A199461 A199462 A199463


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 07 2011


STATUS

approved



