

A199458


Decimal expansion of greatest x satisfying x^22*x*sin(x)=2*cos(x).


2



2, 1, 7, 0, 8, 5, 3, 3, 9, 9, 9, 4, 4, 2, 6, 8, 4, 6, 6, 1, 8, 2, 9, 6, 7, 7, 8, 9, 6, 2, 4, 5, 3, 8, 9, 9, 3, 1, 8, 7, 7, 3, 3, 2, 7, 6, 9, 0, 3, 4, 8, 5, 9, 1, 8, 0, 8, 0, 1, 0, 9, 5, 9, 7, 0, 0, 1, 5, 1, 5, 5, 8, 6, 4, 8, 0, 9, 7, 7, 9, 1, 2, 2, 0, 6, 3, 3, 3, 8, 1, 2, 6, 1, 1, 7, 3, 3, 6, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A199370 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=2.17085339994426846618296778962453899318773...


MATHEMATICA

a = 1; b = 2; c = 2;
f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, Pi, Pi}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.17, 2.18}, WorkingPrecision > 110]
RealDigits[r] (* A199458 greatest root *)


CROSSREFS

Cf. A199429.
Sequence in context: A103114 A004561 A255984 * A287480 A287755 A051258
Adjacent sequences: A199455 A199456 A199457 * A199459 A199460 A199461


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 06 2011


STATUS

approved



