login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196080 Numerators of the sum of the n-th partial sums of the expansions of e and 1/e. 0
2, 2, 3, 3, 37, 37, 1111, 1111, 6913, 6913, 799933, 799933, 739138093, 739138093, 44841044309, 44841044309, 32285551902481, 32285551902481, 9879378882159187, 9879378882159187, 1251387991740163687 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The n-th partial sums of the Taylor expansion of E are f(n) = A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, 163/60,.. .

The partial sums of an expansion of 1/e are essentially A000255(n-2)/A001048(n-1) preceded by 1 and 0, namely g(n)= 1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760,... (Jolley's partial sums of 1/E in A068985 is the bisection 0, 1/3, 11/30, 103/280, 16687/45360,... of g(n).)

The current sequence are the numerators of f(n)+g(n), converging to E+1/E, namely 2, 2, 3, 3, 37/12, 37/12, 1111/360, 1111/360, 6913/2240 = 62217/21060, 6913/2240 = 62217/21060, 799933/259200 = 5599531/1814400,... The unreduced fractions are apparently given by duplicated A051396(n+1)/A002674(n).

LINKS

Table of n, a(n) for n=0..20.

EXAMPLE

a(0)=1+1, a(1)=2+0, a(2)=(5+1)/2, a(3)=(8+1)/3.

MATHEMATICA

a[n_] := (E*Gamma[n+1, 1] + (1/E)*Gamma[n+1, -1])/n! // FullSimplify // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 02 2012 *)

CROSSREFS

Cf. A001113, A068985, A137204 (e+1/e).

Sequence in context: A180000 A053094 A309283 * A124516 A205958 A309090

Adjacent sequences: A196077 A196078 A196079 * A196081 A196082 A196083

KEYWORD

nonn,frac

AUTHOR

Paul Curtz, Sep 27 2011

EXTENSIONS

Redefined by reduced fractions. - R. J. Mathar, Jul 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 23:19 EDT 2023. Contains 361596 sequences. (Running on oeis4.)