login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196081 Dungeons and Dragons Ability Modifier Sequence. 1
10, 0, 11, 0, 12, 1, 13, 1, 14, 2, 15, 2, 16, 3, 17, 3, 18, 4, 19, 4, 20, 5, 21, 5, 22, 6, 23, 6, 24, 7, 25, 7, 26, 8, 27, 8, 28, 9, 29, 9, 30, 10, 31, 10, 32, 11, 33, 11, 34, 12, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Rob Heinsoo and Andy Collins and James Wyatt, Wizards of the Coast, 2008, page 17, Dungeons and Dragons Player's Handbook

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..999

Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).

FORMULA

a(n+5)=a(n)+a(n+1)-a(n+4)+3. - Alexander R. Povolotsky, Sep 27 2011

a(n)=19/4-(1/8*I)*I^n+1/8*(-1)^n*n+21/4*(-1)^n+3/8*n+(1/8*I)*(-I)^n . - Alexander R. Povolotsky, Sep 27 2011

G.f. ( 10+x^2-9*x^4+x^5 ) / ( (x^2+1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Sep 27 2011

a(2n) = n+10.

a(2n+1) = A004526(n).

a(0)=10, a(1)=0, a(2)=11, a(3)=0, a(4)=12, a(5)=1, a(n)=a(n-2)+a(n-4)- a(n-6) [From Harvey P. Dale, Oct 01 2011]

MATHEMATICA

LinearRecurrence[{0, 1, 0, 1, 0, -1}, {10, 0, 11, 0, 12, 1}, 60] (* or *) CoefficientList[Series[(10+x^2-9x^4+x^5)/((x^2+1)(x-1)^2(1+x)^2), {x, 0, 60}], x] * From Harvey P. Dale, Oct 01 2011 *)

PROG

(C#)

public int Modifier(int score) {int modifier = 0; if (score % 2 == 0)             {modifier = score / 2 - 5; } else {modifier = (score -1) / 2 - 5; } return modifier; }

CROSSREFS

Sequence in context: A010681 A095418 A055961 * A320380 A088001 A260946

Adjacent sequences:  A196078 A196079 A196080 * A196082 A196083 A196084

KEYWORD

nonn,easy

AUTHOR

Daniel Ray, Sep 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 17:17 EDT 2020. Contains 336439 sequences. (Running on oeis4.)