login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196081
Dungeons and Dragons Ability Modifier Sequence.
1
10, 0, 11, 0, 12, 1, 13, 1, 14, 2, 15, 2, 16, 3, 17, 3, 18, 4, 19, 4, 20, 5, 21, 5, 22, 6, 23, 6, 24, 7, 25, 7, 26, 8, 27, 8, 28, 9, 29, 9, 30, 10, 31, 10, 32, 11, 33, 11, 34, 12, 35
OFFSET
0,1
REFERENCES
Rob Heinsoo and Andy Collins and James Wyatt, Wizards of the Coast, 2008, page 17, Dungeons and Dragons Player's Handbook
FORMULA
a(n+5) = a(n)+a(n+1)-a(n+4)+3. - Alexander R. Povolotsky, Sep 27 2011
a(n) = 19/4-(1/8*I)*I^n+1/8*(-1)^n*n+21/4*(-1)^n+3/8*n+(1/8*I)*(-I)^n. - Alexander R. Povolotsky, Sep 27 2011
G.f.: ( 10+x^2-9*x^4+x^5 ) / ( (x^2+1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Sep 27 2011
a(2n) = n+10.
a(2n+1) = A004526(n).
a(0)=10, a(1)=0, a(2)=11, a(3)=0, a(4)=12, a(5)=1, a(n)=a(n-2)+a(n-4)- a(n-6). - Harvey P. Dale, Oct 01 2011
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1, 0, -1}, {10, 0, 11, 0, 12, 1}, 60] (* or *) CoefficientList[Series[(10+x^2-9x^4+x^5)/((x^2+1)(x-1)^2(1+x)^2), {x, 0, 60}], x] (* Harvey P. Dale, Oct 01 2011 *)
PROG
(C#)
public int Modifier(int score) {int modifier = 0; if (score % 2 == 0) {modifier = score / 2 - 5; } else {modifier = (score -1) / 2 - 5; } return modifier; }
CROSSREFS
Sequence in context: A095418 A055961 A341504 * A320380 A088001 A344071
KEYWORD
nonn,easy
AUTHOR
Daniel Ray, Sep 27 2011
STATUS
approved