|
|
A088001
|
|
a(n) is the sum of non-palindromic divisors of n.
|
|
3
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 12, 13, 14, 15, 16, 17, 18, 19, 30, 21, 0, 23, 36, 25, 39, 27, 42, 29, 55, 31, 48, 0, 51, 35, 66, 37, 57, 52, 70, 41, 77, 43, 0, 60, 69, 47, 100, 49, 85, 68, 91, 53, 99, 0, 98, 76, 87, 59, 147, 61, 93, 84, 112, 78, 0, 67, 119, 92, 129, 71, 162, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,10
|
|
LINKS
|
Indranil Ghosh, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n)=0 iff all divisors are palindromic. See A062687.
a(n)+A088000(n) = A000203(n). - R. J. Mathar, Sep 09 2015
|
|
MAPLE
|
A088001 := proc(n)
numtheory[sigma](n)-A088000(n) ;
end proc; # R. J. Mathar, Jul 28 2016
|
|
MATHEMATICA
|
Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] != x &], {k, 73}] (* Jayanta Basu, Aug 12 2013 *)
|
|
PROG
|
(Python)
def ispal(n):
return n==int(str(n)[::-1])
def A088001(n):
s=0
for i in range(1, n+1):
if n%i==0 and not ispal(i):
s+=i
return s # Indranil Ghosh, Feb 10 2017
|
|
CROSSREFS
|
Cf. A087999, A088000, A088002.
Sequence in context: A341504 A196081 A320380 * A344071 A260946 A019091
Adjacent sequences: A087998 A087999 A088000 * A088002 A088003 A088004
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Labos Elemer, Oct 14 2003
|
|
STATUS
|
approved
|
|
|
|