The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088000 a(n) is the sum of the palindromic divisors of n. 8
 1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..10000 EXAMPLE n=14: a(14)=1+2+7=10; n=101: a(101)=1+101=102; MAPLE A088000 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if isA002113(d) then a := a+d ; end if; end do; a ; end proc: seq(A088000(n), n=1..100) ; # R. J. Mathar, Sep 09 2015 MATHEMATICA Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *) PROG (Python) def ispal(n): return n==int(str(n)[::-1]) def A088000(n): s=0 for i in range(1, n+1): if n%i==0 and ispal(i): s+=i return s print([A088000(n) for n in range(1, 30)]) # Indranil Ghosh, Feb 10 2017 (PARI) a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020 CROSSREFS Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors). Sequence in context: A107749 A353783 A093811 * A284344 A168338 A034690 Adjacent sequences: A087997 A087998 A087999 * A088001 A088002 A088003 KEYWORD base,nonn AUTHOR Labos Elemer, Oct 14 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 03:48 EST 2023. Contains 360082 sequences. (Running on oeis4.)