login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088000
a(n) is the sum of the palindromic divisors of n.
8
1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
OFFSET
1,2
LINKS
EXAMPLE
n=14: a(14)=1+2+7=10;
n=101: a(101)=1+101=102;
MAPLE
A088000 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if isA002113(d) then
a := a+d ;
end if;
end do;
a ;
end proc:
seq(A088000(n), n=1..100) ; # R. J. Mathar, Sep 09 2015
MATHEMATICA
Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)
PROG
(Python)
def ispal(n):
return n==int(str(n)[::-1])
def A088000(n):
s=0
for i in range(1, n+1):
if n%i==0 and ispal(i):
s+=i
return s
print([A088000(n) for n in range(1, 30)]) # Indranil Ghosh, Feb 10 2017
(PARI) a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ Michel Marcus, Apr 06 2020
CROSSREFS
Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors).
Sequence in context: A353783 A367466 A093811 * A284344 A168338 A034690
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Oct 14 2003
STATUS
approved