

A088000


a(n) is the sum of palindromic divisors of n.


7



1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 16, 1, 10, 9, 15, 1, 21, 1, 12, 11, 36, 1, 24, 6, 3, 13, 14, 1, 17, 1, 15, 48, 3, 13, 25, 1, 3, 4, 20, 1, 19, 1, 84, 18, 3, 1, 24, 8, 8, 4, 7, 1, 21, 72, 22, 4, 3, 1, 21, 1, 3, 20, 15, 6, 144, 1, 7, 4, 15, 1, 33, 1, 3, 9, 7, 96, 12, 1, 20, 13, 3, 1, 23, 6, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..10000


EXAMPLE

n=14: a(14)=1+2+7=10;
n=101: a(101)=1+101=102;


MAPLE

A088000 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if isA002113(d) then
a := a+d ;
end if;
end do;
a ;
end proc:
seq(A088000(n), n=1..100) ; # R. J. Mathar, Sep 09 2015


MATHEMATICA

Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* Jayanta Basu, Aug 12 2013 *)


PROG

(Python)
def ispal(n):
....if n==int(str(n)[::1]):return True
....return False
def A088000(n):
....s=0
....for i in range(1, n+1):
........if n%i==0 and ispal(i)==True:
............s+=i
....return s # Indranil Ghosh, Feb 10 2017


CROSSREFS

Sequence in context: A116607 A107749 A093811 * A284344 A168338 A034690
Adjacent sequences: A087997 A087998 A087999 * A088001 A088002 A088003


KEYWORD

base,nonn


AUTHOR

Labos Elemer, Oct 14 2003


STATUS

approved



