login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of the palindromic divisors of n.
8

%I #29 May 01 2021 08:03:19

%S 1,3,4,7,6,12,8,15,13,8,12,16,1,10,9,15,1,21,1,12,11,36,1,24,6,3,13,

%T 14,1,17,1,15,48,3,13,25,1,3,4,20,1,19,1,84,18,3,1,24,8,8,4,7,1,21,72,

%U 22,4,3,1,21,1,3,20,15,6,144,1,7,4,15,1,33,1,3,9,7,96,12,1,20,13,3,1,23,6,3

%N a(n) is the sum of the palindromic divisors of n.

%H Indranil Ghosh, <a href="/A088000/b088000.txt">Table of n, a(n) for n = 1..10000</a>

%e n=14: a(14)=1+2+7=10;

%e n=101: a(101)=1+101=102;

%p A088000 := proc(n)

%p a := 0 ;

%p for d in numtheory[divisors](n) do

%p if isA002113(d) then

%p a := a+d ;

%p end if;

%p end do;

%p a ;

%p end proc:

%p seq(A088000(n),n=1..100) ; # _R. J. Mathar_, Sep 09 2015

%t Table[Plus @@ Select[Divisors[k], Reverse[x = IntegerDigits[#]] == x &], {k, 86}] (* _Jayanta Basu_, Aug 12 2013 *)

%o (Python)

%o def ispal(n):

%o return n==int(str(n)[::-1])

%o def A088000(n):

%o s=0

%o for i in range(1, n+1):

%o if n%i==0 and ispal(i):

%o s+=i

%o return s

%o print([A088000(n) for n in range(1,30)]) # _Indranil Ghosh_, Feb 10 2017

%o (PARI) a(n) = sumdiv(n, d, my(dd=digits(d)); if (Vecrev(dd) == dd, d)); \\ _Michel Marcus_, Apr 06 2020

%Y Cf. A062687 (all divisors are palindromic), A087990 (number of palindromic divisors).

%K base,nonn

%O 1,2

%A _Labos Elemer_, Oct 14 2003