OFFSET
1,2
COMMENTS
The first few n such that a(n) = n are: 1,14,27,156,196. Are there any more?
Inverse Moebius transform of A007954(n). a(n) = A007954(n) * A000012(n), where operation * denotes Dirichlet convolution for n >= 1. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d). Simultaneously holds Dirichlet multiplication: a(n) * A008683(n) = A007954(n). [From Jaroslav Krizek, Mar 22 2009]
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(1234)=69 because the divisors of 1234 are: [1, 2, 617, 1234] and
1+2+(6*1*7)+(1*2*3*4) = 69.
MAPLE
A093811 := proc(n::integer)
local a, d ;
a := 0 ;
for d in numtheory[divisors](n) do
a := a+A007954(d) ;
end do:
end proc: # R. J. Mathar, Oct 02 2019
MATHEMATICA
Table[Total[Times@@IntegerDigits[#]&/@Divisors[n]], {n, 100}] (* Harvey P. Dale, Jun 02 2022 *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Jason Earls, May 20 2004
STATUS
approved